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Lithium-ion batteries (LIBs) have attracted increasing attention as a sustainable power 
source due to the rapid growth in mobile electronics and electric automobile markets, driven 
by increasing environmental awareness [1-4]. The electrochemical performance of LIBs is 
strongly dependent on the active electrode materials. Therefore, their continuing advanced 
development is of key importance to meet the expectations of the market [5-7]. Graphite, 
commonly used in LIB anodes, forms binary graphite intercalation compounds with the 
formula LiC6, via the intercalation of lithium ions at 0.1 V vs. Li+/Li, corresponding to a ca-
pacity of ~372 mAh g–1 [8,9]. The favorable energy density and reversible charge/discharge 
cycles of graphite have contributed to the commercial success of conventional LIBs. Nev-
ertheless, the new demands of state-of-the art applications require better energy and power 
characteristics, requiring the development of alternative anode materials that can surpass the 
electrochemical performance of graphite. 

Nanoporous carbons (NPCs) have been utilized as LIB anodes due to their good kinetic 
properties and excellent energy storage characteristics [10,11]. NPCs provide efficacious 
Li-ion diffusion pathways because they contain extensive percolation networks, which origi-
nate from interconnected nanopores [12]. In addition, NPCs possess numerous active sites 
for Li-ion storage, including topological defects, edge defects, and heteroatoms [13,14]. 
NPCs fabricated from bio-waste provide additional advantages of sustainability, low cost, 
and simplicity of fabrication [15,16]. Fallen leaves, particularly ginkgo leaves, are consid-
ered to be good precursors for NPCs, because they are mainly composed of cellulose, which 
is known to be a good carbon source. Ginkgo leaves are also estimated to be one of the most 
abundant and ubiquitous tree waste products in nature [17]. The use of NPCs as a LIB anode 
material has been extensively reported [18-21]. Sun et al. [18] reported NPCs derived from 
spongy pomelo peels, showing a reversible capacity of ~452 mAh g–1. Carbonaceous materi-
als derived from green tea leaves have exhibited a specific capacity of 471 mAh g–1 [19]. 
Zhang et al. [20] reported NPCs fabricated from pine cones, with a specific capacity of 394 
mAh g–1 and a coulombic efficiency of 99.0%. Hierarchical porous carbon obtained from fish 
scales showed a reversible capacity of 541.8 mAh g–1 and stable cycling performance (~75 
cycles) [21]. These materials show improved capacities and rate performance compared to 
the conventional graphite anode. However, the above performances are highly variable, de-
pending on the carbon precursors and the fabrication processes used. These results imply 
that better-performing NPCs could be prepared using optimized carbon precursors and syn-
thetic methods. Therefore, more studies on the preparation of competitive NPCs from bio-
waste are still required for high-performance LIBs. 

In this study, nanoporous carbonaceous materials rich in heteroatoms (GL-NPCs) were 
fabricated from ginkgo leaves by simple carbonization/activation with potassium hydroxide 
followed by acid treatment. The GL-NPCs exhibited a high specific surface area of 1296 m2 
g–1 and a high heteroatom content (C/O and C/N atom ratios of 7.9 and 30.6, respectively). 
These properties led to superior electrochemical performance, featuring a high specific ca-
pacity of ~576 mAh g–1, good rate capabilities at current densities from 0.1 to 2 A g–1, and 
stable cycling. 

Ginkgo leaves were collected from roadside trees near Inha University and successively 
washed several times with distilled water and ethanol (94.0%; OCI Co., Korea) to remove 
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vibration mode of the sp2-hybridized C atoms, respectively. 
The in-plane crystal size of the hexagonal carbon structure 
(La) is approximately several nanometers, as determined by 
the intensity ratio of the D and G bands. These amorphous 
carbon structures could be the result of the KOH activation and 
carbonization. 

The previously reported carbon activation mechanism 
by KOH can be divided into two steps, depending on the 
temperature [22]. Below 700°C, the consumption of carbon 
by oxygen is catalyzed by potassium metal, producing carbon 
monoxide and carbon dioxide. Following the above activation, 
metallic potassium ions are formed above 700°C. The formed 
metallic potassium penetrates the graphitic layers and expands 
the graphite lattice by rapidly removing the intercalated 
potassium. As a result, a highly defect-rich and porous carbon 
structure is produced.

The pore structure of the GL-NPCs was investigated using ni-
trogen adsorption and desorption isotherm tests (Fig. 2). The iso-
therm curves exhibited the International Union of Pure and Ap-
plied Chemistry type-I and type-IV hybrid shapes, suggesting a 
dual micro- and mesoporous structure (Fig. 2a). The adsorption 
of nitrogen gas at low relative pressure (P/P0<0.01) is attributed 
to monolayer adsorption, which accounts for half of the adsorbed 
amount. The quantity of adsorbed nitrogen gradually increases 
until P/P0 ~0.5, indicating that the GL-NPCs possess nanometer-
scale pores. 

In addition, hysteresis was observed in the adsorption and 
desorption curves of the GL-NPCs, allowing an estimation of 
the mesopore structure from its shape. The isotherm curves of 
the GL-NPCs exhibited an H4-type hysteresis loop, indicating 
the presence of narrow silt-like pores. The pore size distribution 

surface-adsorbed impurities. After drying at 80°C, the dried 
leaves (5 g) were ground with KOH (10 g, 95%; Samchun Pure 
Chemical Co., Ltd., Korea) for 30 min using a mortar and pestle. 
The mixture was heated at 800°C under N2 atmosphere in a tu-
bular furnace at a heating rate of 10°C min–1. The product was 
successively washed with distilled water and ethanol several 
times and then dried at 80°C. The resulting material was treated 
with 30 wt% nitric acid (60%; Daejung Chemicals & Metals 
Co., Ltd., Korea) at 60°C for 2 h under mild stirring. Finally, the 
as-prepared GL-NPCs were successively washed several times 
with water and ethanol and stored in a vacuum oven at 30°C. 

The electrochemical characteristics of GL-NPCs were mea-
sured using a automatic battery cycler (Wonatech, Korea). For 
the half-cell tests, a CR2032-type coin cell was assembled in 
a glove box filled with argon gas using the sample as a work-
ing electrode and lithium foil as both the counter and reference 
electrodes. For the Li-ion cell, a 1 M LiPF6 (99.99%; Aldrich, 
USA) solution in ethylene carbonate/dimethyl carbonate (EC/
DMC) (1:1 v/v) was used as an electrolyte, and a glass micro-
fiber filter (GF/F; Whatman, UK) was used as a separator. The 
working electrode was prepared by mixing the active material 
(70 wt%), super P as a conductive carbon (20 wt%), and poly-
vinylidene fluoride (10 wt%, average Mw ~534,000 by GPC, 
powder; Sigma-Aldrich) as a binder in N-methyl-2-pyrrolidone 
(99.7%; Daejung Chemicals & Metals Co., Ltd.). The slurries 
were coated on Cu foil (20 μm thickness) and dried in an oven at 
80°C. The galvanostatic discharge/charge tests were carried out 
between 0.01 and 3.0 V at various current densities. 

The morphologies of the GL-NPCs were characterized us-
ing field emission transmission electron microscopy (FE-TEM; 
JEM2100F, JEOL, Japan) and field emission scanning electron 
microscopy (S-4300; Hitachi, Japan). To investigate the micro-
structure of GL-NPCs, X-ray diffraction (XRD; Rigaku DMAX 
2500) and Raman spectroscopy were employed. XRD analysis 
was performed using Cu Kα radiation (λ=0.154 nm) at 40 kV 
and 100 mA. Raman spectra were recorded using a continuous-
wave linearly polarized laser (514 nm, 2.41 eV, 16 mW). The 
laser beam was focused using a 100× objective lens, resulting 
in a spot ~1 μm in diameter. The specific surface area and pore 
structure of the GL-NPCs were obtained from nitrogen adsorp-
tion/desorption isotherms recorded by a surface area, and poro-
simetry analyzer (ASAP 2020; Micromeritics, USA) at –196°C. 
In addition, their surface chemical properties were investigated 
using X-ray photoelectron spectroscopy (XPS; PHI 5700 ESCA, 
USA) with monochromatic Al Kα radiation (hν=1486.6 eV). 

As shown in Fig. 1a and c, GL-NPCs are composed of 
micrometer-scale particles with irregular shape; a number of 
macropores were also observed with TEM and scanning electron 
microscopy imaging. High-resolution FE-TEM imaging shows 
an amorphous carbon structure without any long-range carbon 
ordering (Fig. 1b). The XRD pattern of the GL-NPCs features 
two broad peaks of the (002) and (100) planes of graphite 
centered at 23 and 44°, respectively (Fig. 1d). The above pattern 
indicated the amorphous carbon structure of the samples. 

In contrast, the Raman spectrum of the GL-NPCs exhibited 
distinct D and G bands at ~1350 and ~1580 cm–1, respectively 
(Fig. 1e). The D and G bands correspond to the disorder in the 
A1g breathing mode of the six-fold aromatic ring close to the 
basal structure, and the hexagonal structure related to the E2g 

Fig. 1. The morphology and structural properties of nanoporous car-
bonaceous materials rich in heteroatoms (GL-NPCs). (a, b) Field emission 
transmission electron microscopy images of GL-NPCs. The inset image in 
(b) is the diffraction pattern of the samples. (c) Field emission scanning 
electron microscopy image of GL-NPCs. (d) X-ray diffraction pattern and (e) 
Raman spectrum of GL-NPCs. 
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i = anb 	 	 		  (1)

, where i is the current (A), v is the scan rate (mV s–1), and a 
and b are constants. For diffusion-controlled charge storage, 
the b-value is close to 0.5. In contrast, the b-value for surface-

of the GL-NPCs is depicted in Fig. 2b, being relatively broad 
and composed of nanometer-scale pores of <10 nm. The large 
number of nanopores resulted in a high specific surface area of 
~1296 m2 g–1.

The surface properties of the GL-NPCs were characterized by 
XPS (Fig. 3). Several distinct peaks were observed in the C 1s 
spectrum, centered at ~284.3 eV (C=C bonds), ~285.7 eV (C–O, 
C–N bonds), and ~289.8 eV (O–C=O bonds) (Fig. 3a). The O 
1s spectrum shows two distinct peaks centered at ~532.8 eV 
and ~531.4 eV, attributed to C=O and C–O bonds, respectively 
(Fig. 3b). The nitrogen atoms existed in pyridine, pyridone/
pyrrole, and N-oxide forms, as shown in Fig. 3c [23]. The C/O 
and C/N atom ratios were equal to 7.87 and 30.6, respectively, 
implying numerous heteroatoms doped on the GL-NPC surface. 
These heteroatoms can act as redox centers for Li-ion storage, 
improving the specific capacity. 

The electrochemical properties of GL-NPCs as a LIB anode 
were investigated using a half-cell configuration, with 1 M LiPF6 
dissolved in EC/DMC (1:1 v/v) as an electrolyte, in a potential 
window of 0.01–3.0 V vs. Li+/Li (Fig. 4). The galvanostatic 
discharge/charge profiles of the first three cycles at a current 
density of 100 mA g–1 are shown in Fig. 4a. For the first discharge 
curve, a change in voltage slope was observed between 1.0 and 
0.5 V. This result agrees with the cyclic voltammogram shown in 
Fig. 4b. Therein, the first cathodic peak clearly appeared in the 
potential window of 1.0–0.5 V. 

However, this peak was not observed in subsequent cycles, 
since it originates with the formation of an irreversible solid 
electrolyte interphase layer, which prevents further electro-
lyte decomposition after the first cycle [24]. The galvanostatic 
discharge/charge profiles show linear discharge/charge curves 
without plateaus (Fig. 4a). This is attributed to the absence 
of equivalent Li-ion storage sites, since GL-NPCs feature a 
disordered hexagonal carbon structure. 

The reversible capacity of the GL-NPCs at a current density 
of 100 mA g–1 is ~576 mAh g–1, which is much larger than that 
of graphite (~372 mAh g–1). To investigate the contributions of 
capacitive and diffusion-controlled reactions to Li-ion storage, 
we analyzed the cyclic voltammetry (CV) curves at various scan 
rates (0.1 to 50 mV s–1) using the following power-law relation-
ship: 

Fig. 2. (a) Nitrogen adsorption-desorption isotherms and (b) pore size distribution of the nanoporous carbonaceous materials rich in heteroatoms (GL-
NPCs).

Fig. 3. (a) C 1s, (b) O 1s, and (c) N 1s X-ray photoelectron spectroscopy 
spectra of nanoporous carbonaceous materials rich in heteroatoms (GL-
NPCs).
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mances as a LIB anode. A high reversible capacity of 576 mA 
h g–1 was achieved at a current density of 100 mA g–1, and a 
specific capacity of ~194 mAh g–1 was maintained at a 20-fold 
increased current rate. In addition, GL-NPCs showed stable cy-
cling performance over 300 cycles.
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